17611538698
webmaster@21cto.com

扛住100亿次请求?我们来试一试

资讯 0 2522 2017-04-14 12:00:50

21CTO导读:
  有很多文章讲大并发,高负载,正所谓他山之石,可以攻玉,有的文章可能发表较早,但是其中的思想仍然是可以为很多后端设计借鉴。
  作为一个工程师,作者看后开始思考,学习了这样的文章后,是否能给自己的工作带来一些实际经验?纸上得来终觉浅,绝知此事要躬行,能否自己实践一下100亿次红包请求呢?否则读完以后脑子里能剩下的东西,不过就是100亿,1400万QPS整流这样的字眼,剩下的文章将展示作者是如何以此过程为目标,在本地环境的模拟了此过程。
  本文实现目标: 单机支持100万连接,模拟了摇红包和发红包过程,单机峰值QPS 6万,平稳支持业务。


  背景知识


  QPS: Queries per second 每秒的请求数目;
  PPS:Packets per second 每秒数据包数目;
  摇红包:客户端发出一个摇红包的请求,如果系统有红包就会返回,用户获得红包
  发红包:产生一个红包里面含有一定金额,红包指定数个用户,每个用户会收到红包信息,用户可以发送拆红包的请求,获取其中的部分金额。

  确定目标


  在一切系统开始以前,我们应该搞清楚我们的系统在完成以后,应该有一个什么样的负载能力。
  1、用户总数:
  通过文章我们可以了解到微信接入服务器638台, 服务上限大概是14.3亿用户, 所以单机负载的用户上限大概是14.3亿/638台=228万用户/台。
  但是目前中国肯定不会有14亿用户同时在线,参考 http://qiye.qianzhan.com/show/ ... .html 的说法,2016年Q2 微信用户大概是8亿,月活在5.4 亿左右。所以在2015年春节期间,虽然使用的用户会很多,但是同时在线肯定不到5.4亿。
  2、服务器数量:
  一共有638台服务器,按照正常运维设计,我相信所有服务器不会完全上线,会有一定的硬件冗余,来防止突发硬件故障。假设一共有600台接入服务器。
  3、单机需要支持的负载数:
  每台服务器支持的用户数:5.4亿/600 = 90万。也就是平均单机支持90万用户。如果真实情况比90万更多,则模拟的情况可能会有偏差,但是我认为QPS在这个实验中更重要。
  4、单机峰值QPS:
  文章中明确表示为1400万QPS.这个数值是非常高的,但是因为有600台服务器存在,所以单机的QPS为 1400万/600= 约为2.3万QPS, 文章曾经提及系统可以支持4000万QPS,那么系统的QPS 至少要到4000万/600 = 约为 6.6万, 这个数值大约是目前的3倍,短期来看并不会被触及。但是我相信应该做过相应的压力测试。
  5、发放红包:
  文中提到系统以5万个每秒的下发速度,那么单机每秒下发速度50000/600 =83个/秒,也就是单机系统应该保证每秒以83个的速度下发即可。
  最后考虑到系统的真实性,还至少有用户登录的动作,拿红包这样的业务。真实的系统还会包括聊天这样的服务业务。
  最后整体的看一下 100亿次摇红包这个需求,假设它是均匀地发生在春节联欢晚会的4个小时里,那么服务器的QPS 应该是10000000000/600/3600/4.0=1157. 也就是单机每秒1000多次,这个数值其实并不高。如果完全由峰值速度1400万消化 10000000000/(1400*10000) = 714秒,也就是说只需要峰值坚持11分钟,就可以完成所有的请求。可见互联网产品的一个特点就是峰值非常高,持续时间并不会很长。
  总结:
  从单台服务器看.它需要满足下面一些条件:
  1. 支持至少100万连接用户
  2. 每秒至少能处理2.3万的QPS,这里我们把目标定得更高一些 分别设定到了3万和6万。
  3. 摇红包:支持每秒83个的速度下发放红包,也就是说每秒有2.3万次摇红包的请求,其中83个请求能摇到红包,其余的2.29万次请求会知道自己没摇到。当然客户端在收到红包以后,也需要确保客户端和服务器两边的红包数目和红包内的金额要一致。因为没有支付模块,所以我们也把要求提高一倍,达到200个红包每秒的分发速度
  4. 支持用户之间发红包业务,确保收发两边的红包数目和红包内金额要一致。同样也设定200个红包每秒的分发速度为我们的目标。
  想完整模拟整个系统实在太难了,首先需要海量的服务器,其次需要上亿的模拟客户端。这对我来说是办不到,但是有一点可以确定,整个系统是可以水平扩展的,所以我们可以模拟100万客户端,在模拟一台服务器 那么就完成了1/600的模拟。
  和现有系统区别:
  和大部分高QPS测试的不同,本系统的侧重点有所不同。我对2者做了一些对比。
  /uploads/fox/14072220_0.png
  基础软件和硬件
  1、软件:
  Golang 1.8r3 , Shell, Python (开发没有使用C++ 而是使用了Golang, 是因为使用Golang 的最初原型达到了系统要求。虽然Golang 还存在一定的问题,但是和开发效率比,这点损失可以接受)。
  服务器操作系统:
  Ubuntu 12.04
  客户端操作系统:
  Debian 5.0
  2、硬件环
  服务端: Dell R2950。 8核物理机,非独占有其他业务在工作,16G内存。这台硬件大概是7年前的产品,性能应该不是很高要求。
  服务器硬件版本如下:
  /uploads/fox/14072220_1.png
  服务器CPU信息:
  /uploads/fox/14072220_2.png
  客户端: Esxi 5.0 虚拟机,配置为4核 5G内存。一共17台,每台和服务器建立6万个连接。完成100万客户端模拟。
  技术分析和实现
  1、单机实现100万用户连接
  这一点来说相对简单,笔者在几年前就早完成了单机百万用户的开发以及操作。现代的服务器都可以支持百万用户。相关内容可以查看github代码以及相关文档。
  https://github.com/xiaojiaqi/C1000kPracticeGuide
  系统配置以及优化文档:
  https://github.com/xiaojiaqi/C ... cs/cn
  2、3万QPS
  这个问题需要分2个部分来看客户端方面和服务器方面。
  客户端QPS
  因为有100万连接连在服务器上,QPS为3万。这就意味着每个连接每33秒,就需要向服务器发一个摇红包的请求。因为单IP可以建立的连接数为6万左右, 有17台服务器同时模拟客户端行为。我们要做的就保证在每一秒都有这么多的请求发往服务器即可。
  其中技术要点就是客户端协同。但是各个客户端的启动时间,建立连接的时间都不一致,还存在网络断开重连这样的情况,各个客户端如何判断何时自己需要发送请求,各自该发送多少请求呢?
  我是这样解决的:利用NTP服务,同步所有的服务器时间,客户端利用时间戳来判断自己的此时需要发送多少请求。
  算法很容易实现:
  假设有100万用户,则用户id 为0-999999.要求的QPS为5万, 客户端得知QPS为5万,总用户数为100万,它计算 100万/5万=20,所有的用户应该分为20组,如果 time() % 20 == 用户id % 20,那么这个id的用户就该在这一秒发出请求,如此实现了多客户端协同工作。每个客户端只需要知道 总用户数和QPS 就能自行准确发出请求了。
  (扩展思考:如果QPS是3万 这样不能被整除的数目,该如何办?如何保证每台客户端发出的请求数目尽量的均衡呢?)
  服务器QPS
  服务器端的QPS相对简单,它只需要处理客户端的请求即可。但是为了客观了解处理情况,我们还需要做2件事情。
  第一: 需要记录每秒处理的请求数目,这需要在代码里埋入计数器。
  第二: 我们需要监控网络,因为网络的吞吐情况,可以客观的反映出QPS的真实数据。为此,我利用python脚本 结合ethtool 工具编写了一个简单的工具,通过它我们可以直观的监视到网络的数据包通过情况如何。它可以客观的显示出我们的网络有如此多的数据传输在发生。
/uploads/fox/14072220_3.png
  3、摇红包业务
  摇红包的业务非常简单,首先服务器按照一定的速度生产红包。红包没有被取走的话,就堆积在里面。服务器接收一个客户端的请求,如果服务器里现在有红包就会告诉客户端有,否则就提示没有红包。
  因为单机每秒有3万的请求,所以大部分的请求会失败。只需要处理好锁的问题即可。
  我为了减少竞争,将所有的用户分在了不同的桶里。这样可以减少对锁的竞争。如果以后还有更高的性能要求,还可以使用 高性能队列——Disruptor来进一步提高性能。
  注意,在我的测试环境里是缺少支付这个核心服务的,所以实现的难度是大大的减轻了。另外提供一组数字:2016年淘宝的双11的交易峰值仅仅为12万/秒,微信红包分发速度是5万/秒,要做到这点是非常困难的。
  4、发红包业务
  发红包的业务很简单,系统随机产生一些红包,并且随机选择一些用户,系统向这些用户提示有红包。这些用户只需要发出拆红包的请求,系统就可以随机从红包中拆分出部分金额,分给用户,完成这个业务。同样这里也没有支付这个核心服务。
  5、监控
  最后 我们需要一套监控系统来了解系统的状况,我借用了我另一个项目(https://github.com/xiaojiaqi/fakewechat) 里的部分代码完成了这个监控模块,利用这个监控,服务器和客户端会把当前的计数器内容发往监控,监控需要把各个客户端的数据做一个整合和展示。同时还会把日志记录下来,给以后的分析提供原始数据。 线上系统更多使用opentsdb这样的时序数据库,这里资源有限,所以用了一个原始的方案
  监控显示日志大概这样:
  /uploads/fox/14072220_4.png
  代码实现及分析
  在代码方面,使用到的技巧实在不多,主要是设计思想和Golang本身的一些问题需要考虑。
  首先Golang的goroutine 的数目控制,因为至少有100万以上的连接,所以按照普通的设计方案,至少需要200万或者300万的goroutine在工作。这会造成系统本身的负担很重。
  其次就是100万个连接的管理,无论是连接还是业务都会造成一些心智的负担。
  我的设计是这样的:
  /uploads/fox/14072220_5.jpeg
  首先将100万连接分成多个不同的SET,每个SET是一个独立,平行的对象。每个SET 只管理几千个连接,如果单个SET 工作正常,我只需要添加SET就能提高系统处理能力。
  按照SET分还有一个好处,可以将一个SET作为一个业务单元,在不同性能服务器上可以负载不同的压力,比如8核机器管理10个SET,4核机器管理5个SET 可以细粒度的分流压力,并容易迁移处理
  其次谨慎的设计了每个SET里数据结构的大小,保证每个SET的压力不会太大,不会出现消息的堆积。
  再次减少了gcroutine的数目,每个连接只使用一个goroutine,发送消息在一个SET里只有一个gcroutine负责,这样节省了100万个goroutine。这样整个系统只需要保留 100万零几百个gcroutine就能完成业务。大量的节省了cpu 和内存
  系统的工作流程大概如下:
  每个客户端连接成功后,系统会分配一个goroutine读取客户端的消息,当消息读取完成,将它转化为消息对象放至在SET的接收消息队列,然后返回获取下一个消息
  在SET内部,有一个工作goroutine,它只做非常简单而高效的事情,它做的事情如下,检查SET的接受消息,它会收到3类消息:

  1、客户端的摇红包请求消息
  2、客户端的其他消息 比如聊天 好友这一类
  3、服务器端对客户端消息的回应


  对于 第1种消息 客户端的摇红包请求消息 是这样处理的,从客户端拿到摇红包请求消息,试图从SET的红包队列里 获取一个红包,如果拿到了就把红包信息 返回给客户端,否则构造一个没有摇到的消息,返回给对应的客户端。
  对于第2种消息 客户端的其他消息 比如聊天 好友这一类,只需简单地从队列里拿走消息,转发给后端的聊天服务队列即可,其他服务会把消息转发出去。
  对于第3种消息 服务器端对客户端消息的回应。SET 只需要根据消息里的用户id,找到SET里保留的用户连接对象,发回去就可以了。
  对于红包产生服务,它的工作很简单,只需要按照顺序在轮流在每个SET的红包产生对列里放至红包对象就可以了。这样可以保证每个SET里都是公平的,其次它的工作强度很低,可以保证业务稳定。
  代码可见: https://github.com/xiaojiaqi/10billionhongbaos
  实践
  实践的过程分为3个阶段
  阶段1:
  分别启动服务器端和监控端,然后逐一启动17台客户端,让它们建立起100万的链接。在服务器端,利用ss 命令 统计出每个客户端和服务器建立了多少连接。
  命令如下:
  Alias ss2=Ss –ant | grep 1025 | grep EST | awk –F: “{print $8}” | sort | uniq –c’
  结果如下:
  /uploads/fox/14072220_6.png
  阶段2:
  利用客户端的http接口,将所有的客户端QPS 调整到3万,让客户端发出3W QPS强度的请求。
  运行如下命令:
  /uploads/fox/14072220_7.png
  观察网络监控和监控端反馈,发现QPS 达到预期数据。网络监控截图如下:
  /uploads/fox/14072220_8.jpeg
  在服务器端启动一个产生红包的服务,这个服务会以200个每秒的速度下发红包,总共4万个。此时观察客户端在监控上的日志,会发现基本上以200个每秒的速度获取到红包。
  等到所有红包下发完成后,再启动一个发红包的服务,这个服务系统会生成2万个红包,每秒也是200个,每个红包随机指定3位用户,并向这3个用户发出消息,客户端会自动来拿红包,最后所有的红包都被拿走。
  阶段3
  利用客户端的http接口,将所有的客户端QPS 调整到6万,让客户端发出6W QPS强度的请求。
  /uploads/fox/14072220_9.jpeg
  如法炮制,在服务器端,启动一个产生红包的服务,这个服务会以200个每秒的速度下发红包。总共4万个。此时观察客户端在监控上的日志,会发现基本上以200个每秒的速度获取到红包。
  等到所有红包下发完成后,再启动一个发红包的服务,这个服务系统会生成2万个红包,每秒也是200个,每个红包随机指定3位用户,并向这3个用户发出消息,客户端会自动来拿红包,最后所有的红包都被拿走。
  最后,实践完成。
  分析数据
  在实践过程中,服务器和客户端都将自己内部的计数器记录发往监控端,成为了日志。我们利用简单python 脚本和gnuplt 绘图工具,将实践的过程可视化,由此来验证运行过程。
  第一张是客户端的QPS发送数据
  /uploads/fox/14072220_10.png
  这张图的横坐标是时间,单位是秒,纵坐标是QPS,表示这时刻所有客户端发送的请求的QPS。
  图的第一区间,几个小的峰值,是100万客户端建立连接的, 图的第二区间是3万QPS 区间,我们可以看到数据 比较稳定的保持在3万这个区间。最后是6万QPS区间。但是从整张图可以看到QPS不是完美地保持在我们希望的直线上。这主要是以下几个原因造成的
  • 当非常多goroutine 同时运行的时候,依靠sleep 定时并不准确,发生了偏移。我觉得这是golang本身调度导致的。当然如果cpu比较强劲,这个现象会消失。
  • 因为网络的影响,客户端在发起连接时,可能发生延迟,导致在前1秒没有完成连接。
  • 服务器负载较大时,1000M网络已经出现了丢包现象,可以通过ifconfig 命令观察到这个现象,所以会有QPS的波动。

  第二张是 服务器处理的QPS图
  /uploads/fox/14072220_11.png
  和客户端的向对应的,服务器也存在3个区间,和客户端的情况很接近。但是我们看到了在大概22:57分,系统的处理能力就有一个明显的下降,随后又提高的尖状。这说明代码还需要优化。
  整体观察在3万QPS区间,服务器的QPS比较稳定,在6万QSP时候,服务器的处理就不稳定了。我相信这和我的代码有关,如果继续优化的话,还应该能有更好的效果。
  将2张图合并起来 qps如下:
  /uploads/fox/14072220_12.png
  基本是吻合的,这也证明系统是符合预期设计的。
  这是红包生成数量的状态变化图:
  /uploads/fox/14072220_13.png
  非常的稳定。
  这是客户端每秒获取的摇红包状态:
  /uploads/fox/14072220_14.png
  可以发现3万QPS区间,客户端每秒获取的红包数基本在200左右,在6万QPS的时候,以及出现剧烈的抖动,不能保证在200这个数值了。我觉得主要是6万QPS时候,网络的抖动加剧了,造成了红包数目也在抖动。
  最后是Golang 自带的pprof 信息,其中有gc 时间超过了10ms, 考虑到这是一个7年前的硬件,而且非独占模式,所以还是可以接受。如下图示:
  /uploads/fox/14072220_15.jpeg
  总结
  按照设计目标,我们模拟和设计了一个支持100万用户,并且每秒至少可以支持3万QPS,最多6万QPS的系统,简单模拟了微信的摇红包和发红包的过程。可以说达到了预期的目的。
  如果600台主机每台主机可以支持6万QPS,只需要7分钟就可以完成 100亿次摇红包请求。
  虽然这个原型简单地完成了预设的业务,但是它和真正的服务会有哪些差别呢?我罗列了一下:
  /uploads/fox/14072220_16.png
  参考资料:
  单机百万的实践
  https://github.com/xiaojiaqi/C1000kPracticeGuide
  如何在AWS上进行100万用户压力测试
  https://github.com/xiaojiaqi/f ... Cloud
  构建一个你自己的类微信系统
  https://github.com/xiaojiaqi/f ... esign
  http://djt.qq.com/article/view/1356
  http://techblog.cloudperf.net/ ... .html
  http://datacratic.com/site/blo ... 4-ec2
  @火丁笔记
  http://huoding.com/2013/10/30/296
  https://gobyexample.com/non-bl ... tions

  作者:ppmsn2005#gmail.com
  项目:https://github.com/xiaojiaqi/10billionhongbaos
  wiki:https://github.com/xiaojiaqi/1 ... /wiki


 

评论